|
Carbon fiber or carbon fibre (alternatively CF, graphite fiber or graphite fibre) is a material consisting of fibers about 5–10 micrometres in diameter and composed mostly of carbon atoms. To produce carbon fiber, the carbon atoms are bonded together in crystals that are more or less aligned parallel to the long axis of the fiber as the crystal alignment gives the fiber high strength-to-volume ratio (making it strong for its size). Several thousand carbon fibers are bundled together to form a tow, which may be used by itself or woven into a fabric. The properties of carbon fibers, such as high stiffness, high tensile strength, low weight, high chemical resistance, high temperature tolerance and low thermal expansion, make them very popular in aerospace, civil engineering, military, and motorsports, along with other competition sports. However, they are relatively expensive when compared to similar fibers, such as glass fibers or plastic fibers. Carbon fibers are usually combined with other materials to form a composite. When combined with a plastic resin and wound or molded it forms carbon-fiber-reinforced polymer (often referred to as carbon fiber) which has a very high strength-to-weight ratio, and is extremely rigid although somewhat brittle. However, carbon fibers are also composited with other materials, such as with graphite to form carbon-carbon composites, which have a very high heat tolerance. ==History== In 1879, Thomas Edison baked cotton threads or bamboo slivers at high temperatures carbonizing them into an all-carbon fiber filament used in one of the first incandescent light bulbs to be heated by electricity. In 1880, Lewis Latimer developed a reliable carbon wire filament for the incandescent light bulb, heated by electricity. In 1958, Roger Bacon created high-performance carbon fibers at the Union Carbide Parma Technical Center, now GrafTech International Holdings, Inc., located outside of Cleveland, Ohio.〔Bacon, R. "Filamentary graphite and method for producing the same" , Priority date March 18, 1958〕 Those fibers were manufactured by heating strands of rayon until they carbonized. This process proved to be inefficient, as the resulting fibers contained only about 20% carbon and had low strength and stiffness properties. In the early 1960s, a process was developed by Dr. Akio Shindo at Agency of Industrial Science and Technology of Japan, using polyacrylonitrile (PAN) as a raw material. This had produced a carbon fiber that contained about 55% carbon. In 1960 Richard Millington of H.I. Thompson Fiberglas Co. developed a process (US Patent No. 3,294,489) for producing a high carbon content (99%) fiber using rayon as a precursor. These carbon fibers had sufficient strength (modulus of elasticity and tensile strength) to be used as a reinforcement for composites having high strength to weight properties and for high temperature resistant applications The high potential strength of carbon fiber was realized in 1963 in a process developed by W. Watt, L. N. Phillips, and W. Johnson at the Royal Aircraft Establishment at Farnborough, Hampshire. The process was patented by the UK Ministry of Defence, then licensed by the NRDC to three British companies: Rolls-Royce already making carbon fiber, Morganite, and Courtaulds. Within a few years, after successful use in 1968 of a ''Hyfil'' carbon-fiber fan assembly in the Conways of the Vickers VC10s operated by BOAC,〔("Stand Points ). ''Flight International''. 26 September 1968, p. 481〕 Rolls-Royce took advantage of the new material's properties to break into the American market with its RB-211 aero-engine with carbon-fiber compressor blades. Unfortunately, the blades proved vulnerable to damage from bird impact. This problem and others caused Rolls-Royce such setbacks that the company was nationalized in 1971. The carbon-fiber production plant was sold off to form "Bristol Composites". In the late 1960s, the Japanese took the lead in manufacturing PAN-based carbon fibers. The 1970 joint technology agreement allowed Union Carbide to manufacture the Japan’s Toray Industries superior product and USA to dominate the market. Morganite decided that carbon-fiber production was peripheral to its core business, leaving Courtaulds as the only big UK manufacturer. Continuing collaboration with the staff at Farnborough proved helpful in the quest for higher quality and improvements in the speed of production as Courtaulds developed two main markets: aerospace and sports equipment. However Courtaulds's big advantage as manufacturer of the "Courtelle" precursor now became a weakness. Courtelle's low cost and ready availability were potential advantages, but the water-based inorganic process used to produce it made the product susceptible to impurities that did not affect the organic process used by other carbon-fiber manufacturers. Nevertheless, during the 1980s Courtaulds continued to be a major supplier of carbon fiber for the sports-goods market, with Mitsubishi its main customer until a move to expand, including building a production plant in California, turned out badly. The investment did not generate the anticipated returns, leading to a decision to pull out of the area and Courtaulds ceased carbon-fiber production in 1991. Ironically the one surviving UK carbon-fiber manufacturer continued to thrive making fiber based on Courtaulds's precursor. Inverness-based RK Carbon Fibres Ltd concentrated on producing carbon fiber for industrial applications, removing the need to compete at the quality levels reached by overseas manufacturers. During the 1960s, experimental work to find alternative raw materials led to the introduction of carbon fibers made from a petroleum pitch derived from oil processing. These fibers contained about 85% carbon and had excellent flexural strength. Also, during this period, the Japanese Government heavily supported carbon fiber development at home and several Japanese companies such as Toray, Nippon Carbon, Toho Rayon and Mitsubishi started their own development and production. As they subsequently advanced to become market leaders, companies in USA and Europe were encouraged to take up these activities as well, either through their own developments or contractual acquisition of carbon fiber knowledge. These companies included Hercules, BASF and Celanese USA and Akzo in Europe. Since the late 1970s, further types of carbon fiber yarn entered the global market, offering higher tensile strength and higher elastic modulus. For example, T400 from Toray with a tensile strength of 4,000 MPa and M40, a modulus of 400 GPa. Intermediate carbon fibers, such as IM 600 from Toho Rayon with up to 6,000 MPa were developed. Carbon fibers from Toray, Celanese and Akzo found their way to aerospace application from secondary to primary parts first in military and later in civil aircraft as in McDonnell Douglas, Boeing and Airbus planes. By 2000 the industrial applications for highly sophisticated machine parts in middle Europe was becoming more important. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Carbon fibers」の詳細全文を読む スポンサード リンク
|